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Abstract

MOLECULAR AND CRYSTAL ORBITAL STUDIES OF ORGANIC

CRYSTAL FORMATION

by

Artem Masunov

Adviser:    Professor J. J. Dannenberg

Ab initio molecular orbital and crystal orbital methods are applied to the study

of the geometry of hydrogen-bonded organic crystals and to predict the relative

stability of polymorphic modifications. Cluster calculations of para-benzoquinone, of

urea and of thiourea at HF, DFT, and AM1 levels with pseudotranslational constraints

allow for the analysis of the energies for each type of H-bonds and their dependence

on the cluster size. Periodical calculations on infinite systems are in good agreement

with the results of cluster calculations. The cooperative components of intermolecular

interaction, which are neglected in the most empirical force-field models account for

up to 30% of the total interactions in the systems considered. This non-additivity is

shown to lead to experimentally observed differences in crystal packing between urea

and thourea, and can be successfully reproduced at the practically justified

approximations.

One important application of MO calculations is to build simple yet accurate

models for intermolecular interactions. Modifications of the basis set by optimizing

the centroid positions of each basis function (floating basis set) combined with
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semiempirical values for exponent factors are suggested for this purpose. Such a

wavefunction satisfies the Hellman-Feynman theorem and its electron density can be

exactly represented by point charges.

The methodology developed in this work, may be applied to the rational design

of crystals with required properties. This will be useful to solve practical problems of

crystal engineering, and material science.
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CHAPTER 1

1. INTRODUCTION

The purpose of this thesis is to apply ab initio molecular orbital (MO) and

crystal orbital (CO) methods to interpret geometry of organic crystals. The methods are

also applied to prediction of relative stability of polymorphic modifications. Success in

the interpretation and prediction of organic crystal structures will assist material

science in synthesizing the materials with particular properties. It will also advance the

understanding of the structure for other condensed phases such as liquids and

biopolymers. The results are discussed in the framework of the contemporary state of

the field. In this study the supermolecular (cluster) and periodical approaches were

applied to crystals with H-bonds at different levels of theory: semiempirical, Hartree-

Fock (HF), and post-HF. It will be shown that the  cooperative component of

intermolecular interaction can be as large as 30% of the total interaction. On the

example of urea and thiourea we will show how this cooperativity can lead to

experimentally observable differences in crystal packing, and can be successfully

reproduced with practically justified approximations.

Chapter 2 gives a brief overview of the methods for solid-state simulations.

The existing methods of organic crystal structure predictions require a large number of

energy evaluations, making the application of the empirical force field method a

necessity. In many cases additive approximations are used for simplification. Some

ofthem employ ab initio calculations to fit the force field parameters. The empirical
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force-field approach has proved effective, but its applicability to the novel system

types is uncertain. Ab initio methods of crystal calculation (both periodical and cluster

approach) are far more reliable. At present no code for calculation of analytical

derivatives for the periodic system is publically available, which makes geometry

optimization unfeasible. The cluster approach makes the use of existing program

packages for molecular ab initio calculations, and allows to analyze components of

molecular interactions in details. However, this approach yields results for finite

aggregates and it is applicable to periodical systems in asymptotic limits only.

Chapter 2 also summarizes the data on the molecular, cluster, and crystal

structures of urea and thiourea. It addresses the consistency of ab initio calculations

and experiments on energies and geometries of these systems. The joint application of

single-point cluster and periodical calculations based on known crystal structure is

applied in Chapter 3 to the case of crystalline benzoquinone, urea, and thiourea. When

the crystal structure is not experimentally known, single point calculations are no

longer applicable. This necessitates a thorough investigation based on constrained

geometrical optimization of molecular clusters of different sizes. The results of such

an investigation applied to urea and thiourea are reported in Chapters 4, 5 and 7 (for

dimers, one- and two/three-dimensional clusters respectively).

One of the important applications of MO calculations at the high level of

theory is to build simple yet accurate models for intermolecular interactions. Our

attempts to build such a model in order to simulate ab initio data, as well as our

suggestions for its improvements, are described in Chapter 6. According to the

Hellman-Feynman theorem, forces on nuclei in the molecular system can be calculated

classically from the charge density of the molecule. Therefore, when building an
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electrostatic model, one has to make sure that (a) wavefunction complies with the

Hellman-Feynman theorem, and that (b) electron density is reproduced by classical

charge distribution to an acceptable approximation. By comparing classical charge

distribution schemes in the form of different partial atomic charge separation methods,

we found that the ab initio values on interaction energy in the urea chain dimer are

best reproduced by Mulliken charges. This charges are used to describe polarization

effects in larger chain clusters. Chapter 6 also describes the modifications to the basis

set by optimizing centroid positions of each basis function. This, in turn, allows the

wavefunction to satisfy Hellman-Feynman theorem. The resulting charge distribution

is also significantly improved so that the residual electric field in the nuclei of the

optimized molecule vanishes. Since the existing codes are not well suited to handle the

floating basis sets, these calculations present a computational challenge. However,

floating basis set alows to decrease the number of the basis functions N to the

minimum, thus greatly reducing computational costs while maintaining built-in

polarization flexibility of the basis set. We suggest a semiempirical approach to

optimizing parameters of this minimal floating basis set. The ability of the

wavefunction in the form of a minimal floating basis set to be exactly represented by

point charges opens the possibility of building classical and combined models based

on the described wavefunction. Finally, we discuss some donor-acceptor models,

alternative to the electrostatic description of H-bonds.

The methodology developed in this work could be applied to the rational

design of crystals with desirable properties to solve practical problems of crystal

engineering and material science.
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